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The mot ion  of  bubbles  in l iquids has  been s tudied  in m a n y  e a r l i e r  pape r s  [1-8]. In this  
pape r  methods  of  the  p r o j e c t i o n  type  a r e  applied to the p r o b l e m  of a cav i ty  in an ideal,  
i n c o m p r e s s i b l e  liquid in the a bse nc e  of  v o r t i c e s .  The co l l apse  of a bubble hav ing  a f ini te  
in i t ia l  ve loc i ty  in a bound less  l iquid is cons ide red ;  a l so  c o n s i d e r e d  is the co l l apse  of  a 
s t a t i o n a r y  bubble c lose  to a so l id  wal l .  Us ing  the s m a l l - p a r a m e t e r  m e t h o d  the  g e n e r a -  
t ion  of a je t  is examined  ana ly t i ca l ly .  A n u m e r i c a l  comput ing  method  not involving s m a l l  
p a r a m e t e r s  is developed;  it is b a s e d  on ca lcu la t ing  the p ro jec t ion  by n u m e r i c a l  c o m p u t a -  
t ion  of the  c o r r e s p o n d i n g  i n t eg ra l s .  The  method  combines  e c o n o m y  and s imp l i c i t y  of  ap -  
p l ica t ion  with a high a c c u r a c y  in the  reg ion  in which the r e p r e s e n t a t i o n  of the ve loc i ty  
po ten t ia l  by a s e r i e s  of s p h e r i c a l  funct ions  r e m a i n s  ef fec t ive .  

1. F i l l ing  of a Cavi ty  Moving in a Boundless  Liquid:. At the  ins tant  t = 0 we c o n s i d e r  a s p h e r i c a l  c a v -  
i ty of  r ad ius  l =1 mov ing  at a ve loc i ty  u<< [ l [ , i ts mot ion  being d e s c r i b e d  by a dipole and s ink in the  c e n t e r  
of the  sphe re .  The  p r e s s u r e  equals  z e r o  ins ide the cav i ty  and uni ty  at an infinite d i s tance .  We r e p r e s e n t  
the con tour  of  the cav i ty  by a s e r i e s  in L e g e n d r e  po lynomia l s  and the ve loc i t y  potent ia l  �9 by a s e r i e s  in 
s p h e r i c a l  funct ions :  

R - - / ( l +  ~ d~P~(cos0)).  

= ~ ~ P,, (cos 0). (1.1) 
n ~ 0  

Here  r is the  d i s tance  f r o m  the  cen te r ,  which m o v e s  at a ve loc i ty  u(t); 0 is the angle r eckoned  f r o m  
the  d i r ec t ion  of mot ion .  On the  con tour  of the cav i ty  r =R 

Ot -I- u c o s 0  + OR s i n 0  0q~ I 0H Off) 
- -  0--ff ~---T- = 0~ J~ 00 00 " ( 1 . 2 )  

The C a u c h y - L a g r a n g e  i n t e g r a l  on the bounda ry  in the moving  s y s t e m  gives  

0 r  ,~ . 0 0  ~-~  1 [VCI)[2 1. ( 1 . 3 )  at t- -ff-sLn0-~ - - u  cos 0 +=2-2 = 

T h e r e  is an a r b i t r a r y  choice  of  u fo r  t > 0. A s s u m i n g  that  [ u] << [l [ ,  we m a y  seek  the solut ion by 
way of s u c c e s s i v e  a p p r o x i m a t i o n s .  If to  a f i r s t  app rox ima t ion  d 1 = 0, we find that  with r e s p e c t  to e = u / l  

the coef f ic ien t s  in Eq. (1.1) a r e  of the  fol lowing o r d e r s :  

d l ~  e 3, d.,~e 2, d ~  es; 

e 1 ~ e ,  c~ ~ e  2, c s ~ e  s. (1.4) 

F o r  n-> 4 the coef f i c ien t s  dn = 0(e 3). Neglec t ing  sma l l  quant i t ies  of the f o r m  c r f r o m  (1.1)-(1.2),  we 
obtain 

c o -= - -  12l.; 2Q = ul ~ (3/5d 2 - -  t) - -  (13d~); 3c~. = - -  (/Sde); 

c~ = - -  t/4 (lada) - 9/lOFud~; e , ,= --~(l'~d,,) /(n + 1). (1.5) 
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H e r e  n-> 4. We wr i t e  the equat ion for  the ve loc i ty  u in the f o r m  

3td" -4- Iu" ---= Q, Q -- 0 (e~). (1.6) 

Substi tut ion of (1.5) and (1.6) into (1.3) a f t e r  the p ro jec t ion  of  the r e su l t an t  e x p r e s s i o n  on the L e -  
gendre  po lynomia l s  enables  us - to  an a c c u r a c y  of sma l l  quan t i t i e s  of the  o r d e r  of 0(e t) _ to de r ive  equa-  
t ions  fo r  the ra te  of  co l l apse  and the ampl i tudes  of de fo rmat ion :  

3/2/2 + l l '  -= t / 4 u  2 - -  i ; 

A s ---- 3/5 ( 3 l d 2  - -  4l 'd2)  u - -  Q (t - -  7/5d~); A~. = - -  9/4u'; 

A s -~ - -  6 (,12/5l'd 2 + l d 2 )  u - -  6/5Qd2; 

A , ~ l * d , ( "  + 5ll  d~" + 312d,,  + ( 2 - - n )  l l  d,~. (1.7} 

The equat ions  An = 0 (with n-> 4) c o r r e s p o n d  to the equat ions  gove rn ing  the l i nea r  t h e o r y  of  s tabi l i ty  
of  a co l laps ing  bubble [3, 4]. 

We see  f r o m  (t.7} that  the de fo rma t ions  of  the m o v i n g  and co l l aps ing  cav i ty  a r e  exc i ted  in  a c a s c a d e  
m a n n e r .  As a r e s u l t  of the f o r w a r d  ve loc i ty ,  f la t tening o c c u r s  a long the axis  of  mot ion  (i.e.,  d 2 < 0), and by  
v i r tue  of the s imu l t aneous  p r e s e n c e  of f l a t t en ing  and f o r w a r d  ( t rans la t ional )  ve loc i ty  alone we have d 3 r 0. 

The f i r s t  equat ion of (1.7) and Eq. (1.6) c o r r e s p o n d  (for  Q =0) to the mode l  p r o b l e m  r e g a r d i n g  a m o v -  
ing sphe re  of  va r i ab le  vo lume [8]; in the co l l apse  of  this  sphe re  an ins tant  n e c e s s a r i l y  a r i s e s  at which 
I u I ~ I l [ . On a pp roa c h i ng  this  instant ,  Eqs .  (1.7) c e a s e  holding, s ince  t he i r  so lut ions  d 2 and d 3 a r e  no 
longer  sma l l .  

Asympto t i c  ana lys i s  of Eqs .  (1.7) in the  r ange  l <<1, in which  the  s o l u t i o n / ( t )  m a y  be e x p r e s s e d  in 
p o w e r  fo rm,  shows that  d 3 > 0. This  c o r r e s p o n d s  to the f o r m a t i o n  of  a je t  in the "tai l"  r eg ion  0 ~ I t .  

2. Cavi ty  Close  to a P lane .  Let  a cav i ty  s t a t i o n a r y  at t = 0 lie at a f a i r  d i s tance  f r o m  the plane so 
that  l<< a,  w h e r e  a is the d i s tance  f r o m  the o r ig in  of coo rd ina t e s  to its image  in the p lane .  We sha l l  seek  
the ve loc i ty  potent ia l  by an a l t e rna t ing  method .  In o r d e r  to obtain a so lu t ion  to an a c c u r a c y  of ~ s it is suf -  
f ic ien t  to have two a pp rox i m a t i ons  

r = r i + ~ 0  ~ + Ot i + @ z §  ... 
co s /~ 

O0' - .~ ~ P~ (cos 0d, 
~ 0  i 

Oli -- ~ s (cos 0~). (2.1) 
n,~__0 r ~ +  t P n  

Here  i is the index of  the cav i ty  o r  its image .  The po la r  axes  of the  coord ina te  s y s t e m s  a r e  d i r ec t ed  
t oward  one ano the r .  On the s u r f a c e  of the cav i ty  i, k =1, 2 

(o0, r2t 0R'00 00~0) (q3~+(1)~  i = ~ k .  (2.2) 

F r o m  Eqs .  (2.1), (2.2), and (1.5) we m a y  de r ive  

co" = 0; c[  = - -  t / 2 ~ l  ~ [ l  (t - -  3/5d~) + u~]; 

c2" = - -  2/3I I2~3; c3" = - -  l l2~ 2 (3/4~ 2 + 9/10do). (2.3) 

Here  and subsequen t ly  we omi t  t e r m s  of the o r d e r  en~ m ( m  > 0), if n + m  > 4 o r  of the o r d e r  e n if n > 3. 
The  coef f ic ien t s  Cn' =0 fo r  n -  > 4. In o r d e r  to m a k e  d& =0(4 2), we m u s t  choose  Q in (1.6) in the fo l lowing way: 

3 u l  4- lu" -= - -  3~2 (3l 2 § l " l )  ---- Q. (2.4) 

Subst i tut ing Eqs .  (2.1) with coef f ic ien t s  (2.3) into (1.3) and a l lowing fo r  (2.4) and Eq. (1.7), which a r e  
val id f o r  ~ = 0, we obtain 

l l  (i + ~ - -  ~4) + 2I2 (314 + ~ + ~) + t = 1 /4u  ~ - -  t / 2 u l ~ ;  

5 /3A1  = ( 3 l d z - - 4 l d 2 )  u + ~.2 [ 3 1 1 d , -  6 (21 z + l l )  d ~ -  19u/~_]; 
A.2 = - -  9 /4u  2 - -  ~2 (20~l.2 + 5 ~ I l  - -  9 / 2 u l ) ;  

i/6A 3 = - -  6 / 5 u i  (2/2 + ~3) _ l d 2  (u + l ~ )  - -  t 8 / 5 d 2 ~ l  . (2.5) 

72 



The coefficients d n =0 for n -> 4, since they satisfy the homogeneous linear equations with zero  ini- 

t ial  conditions. 

The f i rs t  equation of (2.5) and Eq. (2.4) cor respond to the equations describing the model of a sphere 
of variable volume [8]. Deformation s ta r t s  influencing the col lapse and motion of the bubble in approxima-  
tions higher  than (2.5). As a resul t  of interaction with the plane, the s ta t ionary cavity f i rs t  acquires  a ve- 
locity (directed toward the plane), increas ing  in the course  of collapse to reach  values exceeding the rate  
of change of the radius  [8]. A limiting radius of collapse may  always be found. The solution to the last 
three  equations of (2.5) may  be wri t ten in approximate form for  short  t imes and also for  small  radii  l <<1. 
It follows f rom the th i rd  equation of (2.5) that at the onset of the collapse d 2 > 0, i.e., the cavity is drawn 
out in the direction of the plane. The last equation of (2.5) gives d a < 0 at the onset of collapse,  i.e., the 
cavity acquires  an oval fo rm.  As the radius of the cavity diminishes,  a moment a r i ses  at which d 3 > 0, 
and in the neighborhood of the boundary furthest  removed f rom the plane the curvature  diminishes,  i.e., a 
je t  is formed.  F r o m  a par t icuIar  instant the ampIitudes of d 2 and d 3 become so large that Eqs. (2.5) lose 
their  validity. 

3. Caviar in a Boundless Liquid. Project ion Method. Let us consider  the construct ion of a numer i -  
cal method for  descr ibing the motion of a cavity without having to introduce any smal l  pa ramete r .  One of 
the shor tcomings  of existing methods of ealcuIation based on spherical  functions such as [6] is the highly 
cumber some  nature  of the equations, which increases  eatas t rophicalIy  with increas ing number  of t e rms  in 
the basic expansions.  We may derive a far  s impler  and more  efficient method if we make no attempt to 
expand the cumbersome  products of sums but calculate the project ions direct ly.  

The veloci ty potential �9 in the absolute system coinciding at a specified instant with the system mov-  
ing at a velocity u may be expressed  in the fo rm 

P,~ (z )  ( 3 . 1 )  
= ~ F ~  (t) , - T ~ - '  z = cos  0. 

The coordinates of a point on the surface of the cavity a re  given by 

R = ~ R ~ ( t ) P ~ ( z ) .  (3.2) 

If we introduce the veloci ty potential ~v in a sys tem moving with the velocity u 

c p = ~ - - u r z ,  (3.3) 

the kinematic and dynamic conditions ar  r = R  take the form 

On substituting (3.1) and (3.2) 
obtain the sys tem of equations 

dt - -  n + f ] P ~ d z ;  ~ ,  G ~  d F k  - - ,  ~ = F P , f l z ;  

- t  h=l -1 

Gnh ~ PhPn d 
= o ~ 7 -  z;  k , n = O , t , . . .  

--I 

n + t I - -  z 2 ~ F n  " " 
a =  + y .  , P,, + T u -  IF ,  ; 

,~=o = R - , / - - , , ,o 

2 r  = 2 + u 2 _  + + (1 - -  u - -  ' .  

?i=O ~'l:O 

oR _ oq) t - - z  2 ocp OR ( 3 . 4 )  
3t Or R ~ Oz Oz ' 

6--7 -t- 2 \Or]  -]- - = t - t - - - ~ - .  (3.5)  

into (3.4) and (3.5) and project ing onto the Legendre polynomials,  we 

( 3 . 6 )  

Each integral  in Eqs.  (3.6) is a s ingle-valued function of the var iables  R0, R 1 . . . .  , F0, F 1 . . . . .  so that 
the sys tem of equations (3.2) and (3.6) represen ts  an infinite sys tem of ord inary  differential equations, lin- 
ear  with respect  to the der ivat ives .  The function u(t) entering into (3.6} via (3.3) may be chosen a rb i -  
t r a r i ly .  It is only essent ia l  that  the origin of coordinates should remain  permanent ly  inside the cavity, a 
reasonably long way f rom its surface .  We may assume,  in par t icular ,  that u =u 0/-3 or  determine u f rom 
the condition R t = 0. 
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Fig. 1 Fig. 2 

At the initial instant the cavity had the shape of a sphere and was moving at a velocity Uo: 

u=uo; Bo=i ,  R1=6 . . . .  ; Fo=0, F I =  - -  t/2, F2=0 . . . .  ; t=0.  (3.7) 

The sys tem (3.65 with initial conditions (3.75 was solved by approximating it to a finite sys tem of o r -  
der  m. It was assumed that Rn = 0, F n = 0, for  n > m. The sys tem of ordinary  differential equations of o r -  
der  2m derived f rom (3.6) was reduced at each step in t to a sys tem of equations resolved with respec t  to 
the derivat ives;  this was integrated by the Runge-Kut t a  method. Calculation of the in tegra ls  in (3.65 in- 
corpora t ing  Legendre polynomials and their  derivat ives was ca r r i ed  out by Simpson's  rule, the step being 
taken as ~ 1/8 of the distance between the neares t  zeros  of the leading polynomial Pm(COS O 5. For  mon-  
i toring purposes ,  at each t ime s t ep  we calculated the total energy of the sys tem,  which was equal to the 
sum of the potential energy of the cavity, proport ional  to its volume, and the kinetic energy of the liquid 

_~ as J 

Here r are  the values of the potential on the surface.  

The calculations were ca r r i ed  out in the MINSK-2 computer .  The resul ts  of calculations with 16 
Legendre polynomials and u 0 = 0.1 a re  presented in Fig.  1. The form of the cavity is i l lustrated at the in- 
stants of t ime t = 0 ;  0.64; 0.76; 0.84; 0.875; 0.895. For  the instant t =0.895, Fig. 1 also shows the dis t r ibu-  
tion of normal  velocity 8 @/~n along the boundary of the cavity.  For  t =0.895 the velocity at the point O =Tr 
on the surface is more  than three  t imes the  velocity at the point 0 = 0. The front p a ~  of the cavity (0 ~ 0) 
deviates little f rom spherical  in the course  of collapse.  In the r ea r  section of the cavi ty at t ~ 0.87 the 
curvature  passes  through zero,  and a broad jet is formed.  The deformations are  large,  since the shape 
of the cavity in the region 0~ 7r differs considerably f rom that in the region 0 ~ 0. For  severa l"dents"  on 
the sur face  of the cavity the velocity potential of the liquid cannot be expressed  in the form (3.15. The e r -  
r o r  in the calculations accordingly  increases  when the curva ture  in the region of O ~ ~r is negative.  In the 
example presented the e r r o r  in the energy integral  reaches  4% at t =0.895, although for  t ~  0.8 the e r r o r  is 
less than 3 �9 10 -5. It should be noted that an e r r o r  of 47o in the energy represen ts  a reasonable accuracy,  
since the e r r o r  in the coordinates of the cavity boundary is here  much smal le r  than the e r r o r  in the 
boundary velocity. 

We also ca r r i ed  out some calculations for  the case of a s ta t ionary origin of coordinates,  u =0; the 
resul ts  agreed with the case u • 0. The choice of velocity u had no effect on the charac te r  of the solution. 
However, over a cer ta in  range the e r r o r  in the energy integral  diminished. By choosing a fair ly smal l  
t ime step in the integration we were able to make the energy e r r o r  less  than 10 -6 in the range t < 0.865. 

4. Project ion Method in Analyzing the Collapse of a Cavity Close to a Plane. The motion of the cav-  
i ty in the liquid close to a plane is equivalent to the motion of two cavities lying symmet r i ca l ly  on ei ther  
side of the plane in a boundless liquid. In the boundary conditions on the surface of the cavity we must  a l-  
low for the contribution due to a potential with singulari t ies  in the neighboring plane (subsequently,  we shall 
give the index 1 to quantities associa ted  with the neighboring plane, while for  the cavity under cons idera-  
tion the notation employed in Sec. 3 remains  valid). The additional t e r m  in the velocity potential due to 
the presence  of the neighboring plane equals 

~_~ z~(t) . . . .  (4.15 
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Allowing for this t e r m  in the boundary conditions (3.4) and (3.5), we may derive equations s imi lar  to 
(3.6), s imply differing in the values of ~2, F, Gnk 

G ~ k =  + ri k j P . ( z )  dz; 
-1 

= - -  W~ - -  ~ W~ o2-. 
O z  ' 

r = 1 +-~-I  [ u - - -  w ,  - -  (1 - -  z ~) + ~ ~z~ + 2uz i  Or1' 
(4.2) 

~ F n ~  t l{--azO(D 1 t - - z  ~" O(l h 
W l  = uz + - ~  ~,~+'z P~ (z) 71 - ~  + Ba .-~ ; 

n=O ri3 

P,~" (z) a OO~ R (R  - -  az) 0r 
W ~ : - - u + X  Fn B n+z rl Orl Ozi; 

n=O rl3 

ri 2 = (a 2 -  2aRz  + B2)1/2; z i = ( a - - R z ) / r i ;  da/dt = - -  2u. 

The velocity u of the origin of coordinates  may  be determined f rom the conditions R~(t)=0, 
l 

which gives S ~Pi  (z) dz = 0. 
--i 

Together  with the r ight-hand sides and coefficients of (4.2), Eqs. (3.6) represen t  an infinite sys tem 
of differential  equations in R0, Rl, .... F0, F1, ..., l inear with respec t  to the der ivat ives .  The method of 
solution was descr ibed in Sec. 3. The resul ts  of our  calculation of the shape of the cavi ty are  presented 
in Fig.  2 for an initial distance of n o = 3  and an instant of t ime t=0 ;  0.62; 0.82; 0.935; 0.99. For  the in- 
stant t = 0.99, Fig. 2 shows the distr ibution of normal  velocity along the boundary. 

We see that as a resul t  of its col lapse the cavity is acce le ra ted  toward the plane. This effect was 
ea r l i e r  d iscussed  on the bas is  of the model  based on a sphere of variable volume [8]. The velocity at the 
surface point 0 =Tr is much grea te r  than the velocity at the point 0 = 0, i.e., a jet is created,  directed toward 
the plane. The format ion of the jet may  be seen f rom the denting of that par t  of the cavity surface  fur ther  
removed f rom the plane (Fig. 2). 
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