MOTION AND FILLING OF CAVITIES IN A BOUNDLESS
LIQUID AND CLOSE TO A PLANE
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The motion of bubbles in liquids has been studied in many earlier papers [1-8]. In this
paper methods of the projection type are applied to the problem of a cavity in an ideal,
incompressible liquid in the absence of vortices. The collapse of a bubble having a finite
initial velocity in a boundless liquid is considered; also considered is the collapse of a
stationary bubble close to a solid wall, Using the small-parameter method the genera-
tion of a jet is examined analytically. A numerical computing method not involving small
parameters is developed; it is based on calculating the projection by namerical computa-
tion of the corresponding integrals., The method combines economy and simplicity of ap-
plication with a high accuracy in the region in which the representation of the velocity
potential by a series of spherical functions remains effective.

1. Filling of a Cavity Moving in a Boundless Liquid. At the instant t=0 we consider a spherical cav-
ity of radius I =1 moving at a velocity u« | ! |, its motion being described by a dipole and sink in the center
of the sphere. The pressure equals zero inside the cavity and unity at an infinite distance. We represent
the contour of the cavity by a series in Legendre polynomials and the velocity potential ® by a series in
spherical functions:
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Here r is the distance from the center, which moves at a velocity u(t); 8 is the angle reckoned from
the direction of motion. On the contour of the cavity r=R
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The Cauchy—Lagrange integral on the boundary in the moving system gives
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There is an arbitrary choice of u for t > 0. Assuming that |u|« [l |, we may seek the solution by
way of successive approximations. I to a first approximation d; =0, we find that with respect to ¢ =u/I
the coefficients in Eq. (1.1) are of the following orders:
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For n= 4 the coefficients dy =0(c ). Neglecting small quantities of the form & 4, from (1.1)-(1.2), we

obtain
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Here.n=4. We write the equation for the velocity u in the form
3ul' +lur=Q, @=0(. (1.6)

Substitution of (1.5) and (1.6) into (1.3) after the projection of the resultant expression on the Le-
gendre polynomials enables us —to an accuracy of small quantities of the order of 0(¢ ) — to derive equa-
tions for the rate of collapse and the amplitudes of deformation:
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The equations Ap =0 (with n= 4) correspond to the equations governing the linear theory of stability
of a collapsing bubble [3, 4].

We see from (1.7) that the deformations of the moving and collapsing cavity are excited in a cascade
manner. As a result of the forward velocity, flattening occurs along the axis of motion (i.e., d, < 0), and by
virtue of the simultaneous presence of flattening and forward (translational) velocity alone we have d # 0.

The first equation of (1.7) and Eq. (1.6) correspond (for @ =0) to the model problem regarding a mov-
ing sphere of variable volume [8]; in the collapse of this sphere an instant necessarily arises at which
Jul~]7]|. On approaching this instant, Eqs. (1.7) cease holding, since their solutions d, and dgq are no
longer small,

Asymptotic analysis of Eqs. (1.7) in the range I «1, in which the solution I {t) may be expressed in
power form, shows that d; > 0. This corresponds to the formation of a jet in the "tail" region 6~.

2. Cavity Close to a Plane. Let a cavity stationary at t =0 lie at a fair distance from the plane so
that I« a, where a is the distance from the origin of coordinates to its image in the plane. We shall seek
the velocity potential by an alternating method. In order to obtain a solution to an accuracy of ¢ ® it is suf-
ficient to have two approximations
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Here i is the index of the cavity or its image. The polar axes of the coordinate systems are directed
toward one another. On the surface of the cavity i, k=1,2
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From Egs. (2.1), (2.2), and (1.5) we may derive
co = 0; ¢ = —1/282 [ (1 —3/5d,) + uf];
¢ = —2/3L 1% ¢ = — IIPE (3/482 + 9/10d,). (2.3)

Here and subsequently we omit terms of the order £ % ™(m > 0), if n+m > 4 or of the order ¢ if n> 3.
The coefficients cp' =0 for n=4, In order to make d; =0(¢ %), we must choose @ in (1.6) in the following way:

3ul +lu =—32Bl2+11)=0. (2.4)

Substituting Egs. (2.1) with coefficients (2.3) into (1.3) and allowing for (2.4) and Eq. (1.7), which are
valid for £ =0, we obtain
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The coefficients d, =0 for n= 4, since they satisfy the homogeneous linear equations with zero ini-
tial conditions.

The first equation of (2.5) and Eq. (2.4) correspond to the equations describing the model of a sphere
of variable volume [8]. Deformation starts influencing the collapse and motion of the bubble in approxima-
tions higher than (2.5). As a result of interaction with the plane, the stationary cavity first acquires a ve-
locity (directed toward the plane), increasing in the course of collapse to reach values exceeding the rate
of change of the radius [8]. A limiting radius of collapse may always be found. The solution to the last
three equations of (2.5) may be written in approximate form for short times and also for small radiii «1.
It follows from the third equation of (2.5) that at the onset of the collapse d, > 0, i.e., the cavity is drawn
out in the direction of the plane. The last equation of (2.5) gives d;< 0 at the onset of collapse, i.e., the
cavity acquires an oval form. As the radius of the cavity diminishes, a moment arises at which d; > 0,
and in the neighborhood of the boundary furthest removed from the plane the curvature diminighes, i.e., a
jet is formed. Froma particular instant the amplitudes of d, and d; become so large that Egs. (2.5) lose
their validity.

3. Cavity in a Boundless Liquid. Projection Method. Let us consider the construction of a numeri-
cal method for describing the motion of a cavity without having to introduce any small parameter. One of
the shortcomings of existing methods of calculation based on spherical functions such as [6] is the highly
cumbersome nature of the equations, which increases catastrophically with increasing number of terms in
the basic expansions, We may derive a far simpler and more efficient method if we make no attempt to
expand the cumbersome products of sums but calculate the projections directly.

The velocity potential @ in the absolute system coinciding at a specified instant with the system mov-
ing at a velocity u may be expressed in the form

R P, (3} .
D= EOFn(t) —Ty 2=cosh. (3.1}
—

The coordinates of a point on the surface of the cavity are given by

R = N R.(t) P 2). (3.2)

n=0

If we introduce the velocity potential ¢ in a system moving with the velocity u
p=0—urz, {3.3)

the kinematic and dynamic conditions ar r=R take the form
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On substituting (3.1) and (3.2) into (3.4) and (3.5) and projecting onto the Legendre polynomials, we
obtain the system of equations
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Each integralin Egs.(3.6) is a single-valued function of the variables Ry, Ry, ..., Fy, Fy, ..., so that
the system of equations (3.2) and (3.6) represents an infinite system of ordinary differential equations, lin-
ear with respect to the derivatives. The function u(t) entering into (3.6) via (3.3) may be chosen arbi-
trarily, It is only essential that the origin of coordinates should remain permanently inside the cavity, a
reasonably long way from its surface. We may assume, in particular, that u =uol'3 or determine u from
the condition Ry =0.
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Fig. 1 Fig. 2

At the initial instant the cavity had the shape of a sphere and was moving at a velocity u:
u=uo; Ro=1, Ry=0, . . .; Fo=0, Fy= — 1/2, F2a=0, . . .; t=0. (3.7)

The system (3.6) with initial conditions (3.7) was solved by approximating it to a finite system of or-
der m. It was assumed that Ry =0, F,, =0, for n>m, The system of ordinary differential equations of or-
der 2m derived from (3.6) was reduced at each step in t to a system of equations resolved with respect to
the derivatives; this was integrated by the Runge—Kutta method. Calculation of the integrals in (3.6) in-
corporating Legendre polynomials and their derivatives was carried out by Simpson's rule, the step being
taken as ~ 1/8 of the distance between the nearest zeros of the leading polynomial Pm(cos 6). For mon-
itoring purposes, at each time step we calculated the total energy of the system, which was equal to the
sum of the potential energy of the cavity, proportional to its volume, and the kinetic energy of the liquid

L dR
T :nL(D[R(E- +_uz> Ful—z) 'Z—I:]Rdz.

Here ® are the values of the potential on the surface.

The calculations were carried out in the MINSK-2 computer. The results of calculations with 16
Legendre polynomialsanduy=0.1arepresented in Fig. 1. The form of the cavity is illustrated at the in-
stants of time t=0; 0.64; 0.76; 0.84; 0,875; 0.895. For the instant t=0.895, Fig. 1 also shows the distribu-
tion of normal velocity 8 ®/8n along the boundary of the cavity. For t=0.895 the velocity at the point 0 =7
on the surface is more than three timesthe velocity at the point § =0. The front part of the cavity (6 ~ 0)
deviates little from spherical in the course of collapse. In the rear section of the cavity at t= 0.87 the
curvature passes through zero, and a broad jet is formed. The deformations are large, since the shape
of the cavity in the region 8~ differs considerably from that in the region § ~ 0. For several"dents" on
the surface of the eavity the velocity potential of the liquid cannot be expressed in the form (3.1). The er-
ror in the calculations accordingly increases when the curvature in the region of 8§ ~ 7 is negative. In the
example presented the error in the energy integral reaches 4% at t =0.895, although for t~ 0.8 the error is
less than 3 +107°, It should be noted that an error of 4% in the energy represents a reasonable accuracy,
since the error in the coordinates of the cavity boundary is here much smaller than the error in the
boundary velocity.

We also carried out some ealculations for the case of a stationary origin of coordinates, u=0; the
results agreed with the case u# 0. The choice of velocity u had no effect on the character of the solution,
However, over a certain range the error in the energy integral diminished. By choosing a fairly small
time step in the integration we were able to make the energy error less than 107% in the range t< 0.865,

4. Projection Method in Analyzing the Collapse of a Cavity Close to a Plane. The motion of the cav-
ity in the liquid close to a plane is equivalent to the motion of two cavities lying symmetrically on either
side of the plane in a boundless liquid. In the boundary conditions on the surface of the cavity we must al-
low for the contribution due to a potential with singularities in the neighboring plane (subsequently, we shall
give the index 1 to quantities associated with the neighboring plane, while for the cavity under considera~
tion the notation employed in Seec. 3 remains valid). The additional term in the velocity potential due to
the presence of the neighboring plane equals

& Ea () 4.1)
o, =3 i P ¢

n=0
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Allowing for this term in the boundary conditions (3.4) and (3.5), we may derive equations similar to
(3.6), simply differing in the values of Q, T', Gyk
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The velocity u of the origin of coordinates may be determined from the conditions R4(t) =0,

which gives j’ QP (2)dz=10
=4

Together with the right-hand sides and coefficients of (4.2), Egs. (3.6) represent an infinite system
of differential equations in Ry, R4, ..., Fy, Fy, ..., linear with respect to the derivatives. The method of
solution was described in Sec. 3. The results of our calculation of the shape of the cavity are presented
in Fig. 2 for an initial distance of a¢,=3 and an instant of time t=0; 0.62; 0.82; 0.935; 0.99. For the in-
stant t=0.99, Fig. 2 shows the distribution of normal velocity along the boundary.

We see that as a result of its collapse the cavity is accelerated toward the plane. This effect was
earlier discussed on the basis of the model based on a sphere of variable volume [8]., The velocity at the
surface point § =7 is much greater than the velocity at the point 8 =0, i.e., a jet is created, directed toward
the plane, The formation of the jet may be seen from the denting of that part of the cavity surface further
removed from the plane (Fig. 2).
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